

Individual differences in variability in child speech: Phonology, personality, or both?

Tara McAllister Byun, NYU | Sharon Inkelas, UC Berkeley

Variability in adult speech

• Readily captured with formal mechanisms such as partially ordered constraints (e.g. Kiparsky 1993, Anttila 1997) or noise in evaluation of constraint weights/rankings (e.g. Boersma & Hayes 2001, Boersma & Pater 2008)

Child speech variability: Qualitatively different

Trevor, age 377 days, attempting 'dog' (Compton & Streeter 1977):

 $[a?] \sim [gn] \sim [gæ] \sim [dn] \sim [dæ]$

Trevor, ages 556-557 days, attempting 'cookie':

K, age 1;5, attempting 'pen' (Ferguson & Farwell 1975:423):

 $[m\tilde{a}^{\theta}] \sim [\tilde{v}\tilde{\Lambda}] \sim [d\epsilon^{dn}] \sim [hIn] \sim [mb\tilde{o}] \sim [p^hIn] \sim [t^hn_i^t^hn_i^t] \sim [ba^h] \sim [dau^N] \sim [bu\tilde{a}]$

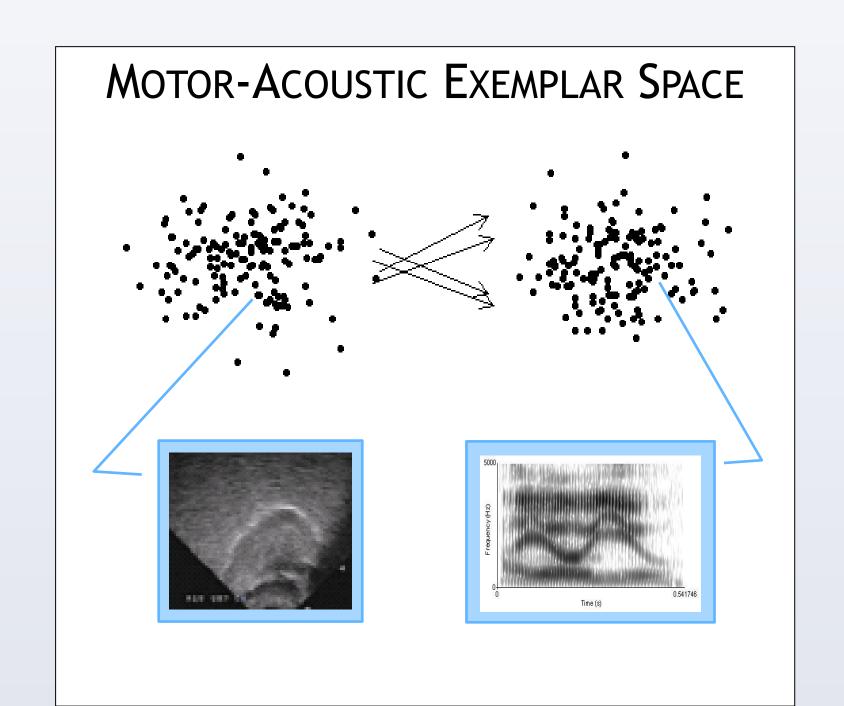
An extragrammatical explanation?

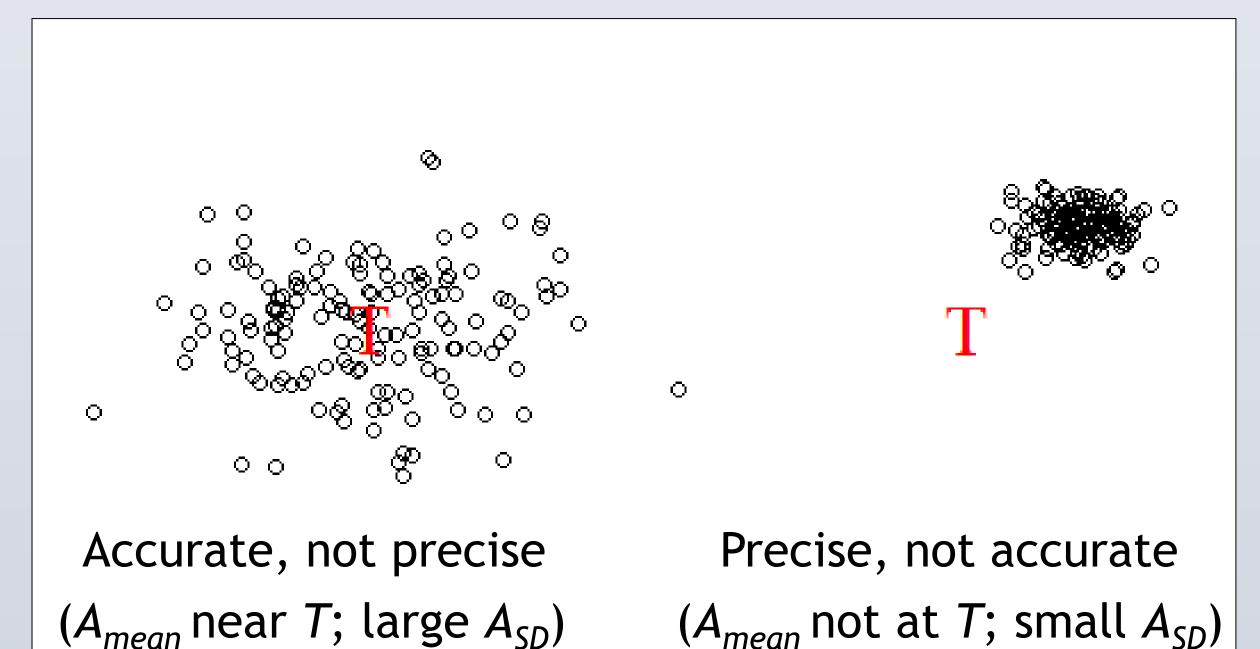
- Children use an adult-like grammar but exhibit sporadic breakdowns due to poor motor control (Hale & Reiss 2008)
- Children probabilistically revert to stored forms from earlier grammars instead of generating a form via the current grammar (Becker & Tessier 2011)

The variability of variability

• Differences in the extent of variability across children have led to proposal of two learning styles.

Systematic/stable: Child mainly attempts forms within his/her capacity for correct production Exploratory/variable: Child attempts more complex forms, with inconsistent results.


- Extent of variability in a child's speech at one year old is highly predictive of variability at age three (Vihman & Greenlee 1987).
- These two learning styles are typically explained in terms of personality differences—but could there be a grammatical explanation?


Proposal

Differences in "tolerance for variability" among child speakers reflect differences in ranking/weight of a grammatical constraint, PRECISE, which favors forms with a history of reliable articulatory execution.

The A-map model

- Multidimensional exemplar space stores motor-acoustic traces (copy of the motor plan executed and associated acoustic consequences)
- Distributional properties of the exemplar space are indexed in a grammatical module, the A(RTICULATORY)-map
- Schematic A-map entry: <MP_{mean}, A_{mean}, A_{SD}>
 - MP_{mean} = idealized motor plan (MP), averaged over past traces
 - A_{mean} = weighted average of past acoustic traces for the MP
 - A_{SD} = standard deviation of acoustic traces associated with the MP; measure of reliability of motor-acoustic mapping

There is a potential tradeoff between accuracy (pressure to match the acoustics of the adult target) and precision (pressure to produce a form that can be realized reliably).

We propose that it is grammatically mediated.

ACCURATE: For a candidate with motor plan $MP_{[i]}$, assign a violation in proportion to the distance between $A_{mean[i]}$ and the center of the adult acoustic target T.

PRECISE: For a candidate with motor plan $MP_{[i]}$, assign a violation in proportion to the magnitude of $A_{SD[i]}$.

Exploratory/variable: Accurate is weighted high

ACCURATE weighted high: Grammar favors candidates which are as close as possible to the adult target, even if likelihood of a performance error is high.

Here, favored candidate features a faithful fricative, even though likelihood of performance error on /s/ is high (as indicated by higher A_{SD} / ACCURATE violation).

	Adult target: [s]	ACCURATE	PRECISE	H
		w = 2	w = 1	
ా a.		0	-2	-2
Ъ.		-1	-1	-3

Systematic/stable: Precise is weighted high

PRECISE weighted high: Grammar prefers candidates associated with a reliable motor-acoustic mapping, even at the cost of some simplification or substitution affecting the adult target.

Here, favored candidate features substitution of [t] (lower likelihood of a performance error) for /s/ in the adult target.

	Adult target: [s]	PRECISE	ACCURATE	H
		$\mathbf{w} = 2$	w = 1	
a.		-2	0	-4
తా b.		-1	-1	-3

Status of Precise in adult grammar

- Precise is demoted over time, but it is not a child-specific constraint.
- However, for a mature adult speaker, virtually all sounds/sequences can be realized with similarly high reliability (similar values of A_{SD}).
- PRECISE will cease to have a meaningful impact on grammatical computations; feature-based markedness and faithfulness will dominate.
- Child-like phonological patterns might reemerge in adult speakers who experience a loss of motor control function (compare e.g. Buchwald 2009).

Conclusion and implications

- The A-map model suggests that variability in child speech, including individual differences in the extent of variation, need not be construed as extragrammatical.
- Our model joins other recent literature (e.g. Yu 2010) in suggesting that the dividing line between grammar and personality traits may be less distinct than previously thought.

Selected references

Becker, M., & A.-M. Tessier (2011). Trajectories of faithfulness in child-specific phonology. *Phonology* 28:163-196.

Boersma, P., & B. Hayes. (2001). Empirical tests of the Gradual Learning Algorithm. *Linguistic Inquiry* 32:45-86.

Boersma, P., & J. Pater. (2008). Convergence properties of a gradual learning algorithm for Harmonic Grammar. Ms., University of Amsterdam and UMass Amherst. ROA-970.

Buchwald, A. (2009). Minimizing and optimizing structure in phonology: Evidence from aphasia. *Lingua* 119: 1380-1395.

Compton, A., & M. Streeter. 1977. Child phonology: data collection and preliminary analyses. *Papers and Reports on Child Language Development 7*. Stanford University.

Ferguson, C. (1979). Phonology as an individual access system: Some data from language acquisition. In C. Fillmore et al. (eds.), *Individual differences in language ability and language behavior*, 189-201. New York: Academic Press.

Ferguson, C., & C. Farwell. (1975). Words and sounds in early language acquisition. *Language* 51: 419-439.

Hale, M. & C. Reiss. (2008). The phonological enterprise. Oxford University Press.

Vihman, M., & M. Greenlee. (1987). Individual differences in phonological development: ages one and three years. *Journal of Speech and Hearing Research* 30:503-521.

Yu, A. (2010). Perceptual compensation is correlated with individuals' "autistic" traits: Implications for models of sound change. *PLoS One* 5(8): e11950.